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Abstract

Methods that move towards less supervised scenarios

are key for image segmentation, as dense labels demand

significant human intervention. Generally, the annotation

burden is mitigated by labeling datasets with weaker forms

of supervision, e.g. image-level labels or bounding boxes.

Another option are semi-supervised settings, that commonly

leverage a few strong annotations and a huge number of

unlabeled/weakly-labeled data. In this paper, we revisit

semi-supervised segmentation schemes and narrow down

significantly the annotation budget (in terms of total la-

beling time of the training set) compared to previous ap-

proaches. With a very simple pipeline, we demonstrate

that at low annotation budgets, semi-supervised methods

outperform by a wide margin weakly-supervised ones for

both semantic and instance segmentation. Our approach

also outperforms previous semi-supervised works at a much

reduced labeling cost. We present results for the Pascal

VOC benchmark and unify weakly and semi-supervised ap-

proaches by considering the total annotation budget, thus

allowing a fairer comparison between methods.

1. Introduction

In computer vision, current state-of-the-art models based

on Convolutional Neural Networks are data-hungry, and

their performance is related to the amount of annotated data

available for training. In particular, segmentation annota-

tions are very costly, as they require a label for each pixel of

the image. Therefore, there is a growing interest in training

segmentation models that do not rely on a high annotation

budget but still achieve a competitive performance.

For semantic and instance segmentation, the use of weak

labels as a cheaper supervision signal to train segmenta-

tion models has been extensively explored in the litera-

ture. Some of the most popular weak supervision sig-

nals are image-level labels [29, 32, 2, 35] or bounding

boxes [6, 19, 14, 15, 33]. Although the results are promis-

ing, they are still far from the performance of methods that

rely on stronger supervision.

Another option to lower the annotation cost are semi-
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Figure 1: Our semi-supervised training pipeline consists of

two networks, an annotation network trained with strong

supervision, and a segmentation network trained with the

union of pseudo-annotations and strong-labeled samples.

supervised scenarios, where a small subset of the data

is strongly annotated, and the remaining samples are

unlabeled/weakly-labeled. The most successful semi-

supervised methods handle heterogeneous annotations (few

strong and a huge amount of weak labels) and, although

they reach higher performance [19, 11, 29], their annota-

tion cost is much higher than the one related to weakly-

supervised schemes.

The goal of weakly and semi-supervised methods is to

obtain segmentation results that are competitive with their

fully-supervised counterparts, while requiring a much lower

annotation cost. However, previous works do not typically

compare to each other in terms of the annotation budget. In

this paper, we argue that when the goal is to minimize hu-

man effort, methods should be compared considering the

annotation cost regardless of the type of annotation they

use. In this direction, [3] proposed a comparison between

weakly and fully-supervised semantic segmentation meth-

ods that contemplates the total annotation time required for

the training set. We extend this analysis including semi-

supervised methods and also, for the first time, for the in-

stance segmentation task. This will allow a unified anal-

ysis across different supervision setups (weakly- or semi-

supervised) and different supervision signals, comparing
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the total annotation time when fixing a certain budget.

In this work, we present a semi-supervised scheme

trained with low annotation budgets that reaches signif-

icantly better performance than weakly-supervised meth-

ods while having the same annotation cost. Our pro-

posed pipeline consists of two networks: a first annotation

model that generates pseudo-annotations for the unlabeled

or weakly-labeled data, and a second segmentation model

that is trained with both the strong and pseudo-annotations

(Figure 1). In order to lower the annotation budget, first

we combine strongly annotated data with unlabeled data, so

that only strong annotations have an associated annotation

cost. With only a few strong annotations, we reach higher

performance than previous weakly and semi-supervised ap-

proaches for both semantic and instance segmentation, at

much reduced annotation budgets.

We also analyze heterogeneous annotations for instance

segmentation, which combine both strong and weak labels.

The weak label that we choose consists in counting the

number of objects there are for each of the class categories

of the dataset [8]. To the authors knowledge, this is the first

time that image level labels with object counts are used for

instance segmentation. We propose to exploit weak labels

by feeding them into the annotation network. As weak la-

bels involve a cost, we adjust the number of samples to an-

alyze different supervision scenarios. We find that, for low

annotation budgets, this solution outperforms the standard

semi-supervised pipeline.

Our contributions can be summarized as follows: 1) We

unify the segmentation benchmarks regardless of the train-

ing setting and the supervision signals by comparing them

in terms of the total annotation cost they require, 2) we

outperform previous semi-supervised semantic segmenta-

tion methods at low annotation budgets for the Pascal VOC

benchmark [7], and present the first quantitative results

for semi-supervised instance segmentation for this dataset

when no extra images are available, 3) we show that when

fixing a low annotation budget, it is more convenient having

fewer but stronger-labeled data over having larger weakly-

annotated sets.

2. Related Work

Weakly-Supervised Semantic Segmentation. Several

works in the literature have proposed to use weak super-

vision to reduce the annotation cost. For semantic seg-

mentation, one of the most popular forms are image-level

labels, as they can be obtained with minimum human in-

tervention. There are approaches that treat image-level la-

bels with multiple instance learning techniques [22, 21, 20],

but these works achieve an accuracy far from their fully-

supervised counterparts. Other works develop Expectation-

Maximization methods to learn from weakly-annotated

data [19]. More recently, a pool of works have focused on

localizing class-specific cues with Class Activation Maps

(CAMs) [34] in order to mine regions [28, 13, 2, 29], while

others obtain regions with attention mechanisms [32]. Our

model resembles to the work from [29]. Their pipeline

consists of two networks, a deep neural network that pro-

duces pseudo-labels from CAMs, and a network that is

trained with the obtained annotations. As our setup is semi-

supervised, our first model will be trained with strong su-

pervision only, while our second network will be trained

with both pseudo- and strong annotations. For seman-

tic segmentation, other weak signals have been exploited,

such as scribbles [31, 16, 27], points [3] or bounding

boxes [19, 6, 14].

Weakly-Supervised Instance Segmentation. Few works

have addressed weakly-supervised instance segmentation.

Bounding box labels have been exploited by [14, 33, 15]

to recursively generate and refine pseudo-labels for the

weak-labeled set. These methods typically rely on bottom-

up segment proposals [23, 25]. In contrast with this ap-

proach, [24] propose an adversarial scheme that learns to

segment without using any object proposal technique. Al-

though these works tackle weakly-supervised instance seg-

mentation, their weak supervision consists in using bound-

ing boxes, becoming the main challenge how to separate

the foreground from the background within a bounding

box. The only work that uses image-level supervision

for weakly-supervised instance segmentation [35] detects

peaks of CAMs and generates a query to retrieve the best

candidate among a set of pre-computed object proposals

(MCG) [23].

Semi-Supervised Segmentation. Semi-supervised learn-

ing allows to reduce the annotation burden while keeping a

competitive performance. Some works that address weakly-

supervised semantic segmentation present results for the

semi-supervised case by combining their generated pseudo-

annotations with a few strong labels [19, 6, 14, 29, 15].

Some other works exclusively tackle the semi-supervised

scenario, as it is our case. Image-level labels were lever-

aged for semi-supervised semantic segmentation by [11].

Their pipeline consists of two separate networks, a clas-

sification and a segmentation network with bridged lay-

ers. They obtain remarkable results training with just a few

strong annotations. The recent work [12] proposes a new

partially supervised training paradigm to combine bound-

ing box annotations and pixel-level masks. To the authors

knowledge, only [12, 15] have tackled semi-supervised

instance segmentation. However, they assume a huge

amount of weakly-labeled samples. In our work, we fo-

cus on low-budget scenarios, presenting the first results for

semi-supervised instance segmentation for the Pascal VOC

benchmark [7] with no extra images from other datasets.
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3. Benchmark for budget-aware segmentation

The main focus of our work is to offer a unified analysis

across different supervision setups and supervision signals

for semantic and instance segmentation. Our motivation

raises from the ultimate goal of weakly and semi-supervised

techniques: the reduction of the annotation burden. We

adopt the analysis framework from [3] and extend it to any

supervision setup, applied to two different tasks: semantic

and instance segmentation.

We estimate the annotation cost of an image from a well-

known dataset for semantic and instance segmentation: the

Pascal VOC dataset [7]. Our study considers four level

of supervision: image-level, image-level labels + object

counts, bounding boxes, and full supervision (i.e. pixel-wise

masks). The estimated costs are inferred from three statis-

tical figures about the Pascal VOC dataset drawn from [3]:

a) on average 1.5 class categories are present in each image,

b) on average there are 2.8 objects per image, and c) there

is a total of 20 class categories. Hence, the budgets needed

for each level of supervision are:

Image-Level (IL): According to [3], the time to verify the

presence of a class in an image is of 1 second. The anno-

tation cost per image is determined by the total number of

possible class categories (20 in Pascal VOC). Then, the cost

is of tIL = 20 classes/image × 1s/class = 20 s/image.

Image-Level + Counts (IL+C): IL annotations can be en-

riched by the amount of instances of each object class. This

scheme was proposed in for weakly-supervised object lo-

calization [8], in which they estimate that the counting in-

creases the annotation time to 1.48s per class. Hence, the

time to annotate an image with image labels and counts

is tIL+C = tIL + 1.5 classes/image × 1.48 s/class =
22.22 s/image.

Full supervision (Full): We consider the annotation time

reported in [3] for instance segmentation: tFull =
18.5 classes/image × 1s/class + 2.8mask/image ×
79 s/mask = 239.7 s/image. As we could not find any

reference to the semantic segmentation task, we will assume

that semantic segmentation labels require as much time as

the instance segmentation ones.

Bounding Boxes (BB): Recent techniques have cut the

cost of annotating a bounding box to 7.0 s/box by click-

ing the most extreme points of the objects [18]. Follow-

ing the same reasoning as for dense predictions, the cost

of annotating a Pascal VOC image with bounding boxes is

tbb = 18.5 classes/image × 1s/class + 2.8 bb/image ×
7 s/bb = 38.1 s/image.

Table 1 summarizes the average cost of the different su-

pervision signals for a single Pascal VOC image.

Given a certain annotation budget, the amount of anno-

tated images will depend on the chosen level of supervision.

The lower the level of supervision, the more images will be

annotated. The central research question of our work is how

IL IL+C Full BB

Cost (s/image) 20 22.22 239.7 38.1

Table 1: Average annotation cost per image when using dif-

ferent types of supervision.

to use an annotation budget: whether in few but fully super-

vised annotations, or in weaker labels for a larger amount

of images.

4. Semi-supervised segmentation

Our pipeline consists of two different networks. A

first fully supervised model fθ is trained with strong-

labeled samples from the ground truth (X,Y ) =
{(x1, y1), ..., (xN , yN )}, being N the total number of

strong samples. The network fθ is an annotation network

used to predict pseudo-labels Y ′ = {y′1, ..., y
′

M} for M un-

labeled samples X ′ = {x′

1, ..., x
′

M}. A second segmenta-

tion network gϕ is trained with (X,Y ) ∪ (X ′, Y ′), as de-

picted in Figure 1. Depending on the task (semantic or in-

stance segmentation), we will choose different architectures

for the networks. It is important to remark that the proposed

pipeline is independent to the network architecture used.

We present experiments for both the semantic and in-

stance segmentation tasks for the Pascal VOC 2012 bench-

mark [7]. The standard semi-supervised setup adopted for

this dataset consists of using the Pascal VOC 2012 train

images (1464 images) as strong-labeled images, and an

additional set (9118 images) from [9] as unlabeled/weak-

labeled. In this section, we vary N to analyze the perfor-

mance at different annotation budgets, and consider M to

be the total size of the training dataset minus N (M =
10582−N ). Note that these M samples are unlabeled, free

of annotation cost.

4.1. Semantic Segmentation

For semantic segmentation, we consider fθ and gϕ to

have the same architecture, a DeepLab-v3+ [4] with an

Xception-65 [5] encoder, with output stride of 16 for both

training and evaluation. We used the official TensorFlow

implementation from [4]. Following the setup described

in Section 4, we run experiments with the standard semi-

supervised setup for Pascal VOC. Table 2 shows the results

in terms of mean Intersection Over Union (mIoU) for differ-

ent levels of supervision. The first row sets the baseline of

78.96 when training the annotation network fθ (a DeepLab-

v3+) with only the 1.4k images from the Pascal VOC 2012

train set. The next row, reports a mIoU of 79.41 when we

train gϕ, also a DeepLab-v3+, with both the strong-labels Y
and the pseudo-labels Y ′ obtained with fθ, which represents

a small improvement. Finally, we trained a DeepLab-v3+

with all labels strongly-annotated (fully-supervised case),
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#Strong #Unlabeled val mIoU test mIoU

DeepLab-v3+ Ours ∼1.4k 78,96 77.26

DeepLab-v3+ Ours ∼1.4k ∼9k 79.41 78.71

DeepLab-v3+ Ours ∼10k 80.42 80.29

DeepLab-v3+ [4] ∼10k 81.21 -

Table 2: Performance of DeepLab-v3+ for the validation

and test set of Pascal VOC 2012 with different supervision

setups.
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Figure 2: Semantic segmentation performance of the anno-

tation and segmentation networks for an increasing budget

for the validation set of Pascal VOC.

and obtained a mIoU of 80.42, close to the reference figure

(81.21) reported in [4].

To assess the impact of fixing different annotation

budgets, we trained several DeepLab-v3+ fθN with a

varying number of strong-labeled training samples N ∈
{100, 200, 400, 800, 1464}. These networks are used to

obtain pseudo-annotations for the M samples without la-

bels. In order to mitigate subset selection bias, for each

value of N we train 5 annotators with different random sub-

sets of N samples and report their average performance.

Then, we train a corresponding gϕN
for each fθN . No-

tice that the pseudo-annotations are obtained for free, as no

supervision signal is required. Figure 2 plots the obtained

mIoU by the annotation network fθN and segmentation net-

work gϕN
for different annotation budgets. We observe that,

given a certain budget, the mIoU of gϕN
is always higher

than the one obtained with the fθN alone, and therefore

the extra pseudo-labels improve the performance. This sug-

gests that pseudo-annotations can increase the quality of the

segmentation tool at no additional cost.

Figure 3 compares our results with recent works of both

weakly-supervised and semi-supervised approaches for se-

mantic segmentation. The plot on the left shows the mIoU

metric with respect to the annotation cost in days. We

propose this analysis as a unified benchmark that allows

a fair comparison between both weakly-supervised and

semi-supervised pipelines. We observe that our results ob-

tained with DeepLab-v3+ outperform all previous meth-

ods (weakly or semi-supervised) at same or lower annota-

tion budgets, setting a new state of the art of 79.41 mIoU

for semi-supervised segmentation, using strong supervision

only. In order to compensate for the different network back-

bones used in the related works, Figure 3 (right) normal-

izes the mIoU scores with the ones obtained by the fully-

supervised counterparts. Our method with DeepLab-v3+

still reaches a closer number to the fully-supervised case

compared to the other works at a fixed annotation bud-

get. We want to highlight that our approach outperforms

all weakly-supervised approaches when matching the anno-

tation cost. Therefore, we conclude that it is preferable to

invest the budget into collecting fewer fully supervised sam-

ples, than a larger amount of weakly-labeled ones. Figure 4

depicts some examples of semantic segmentation predicted

by fθN and gϕN
when using different number of strong la-

bels. As expected, gϕN
obtains better segmentation results

than its counterpart fθN . We can also perceive that at low

annotation budgets (N = 200), the segments produced are

able to accurately outline some contours, although the re-

sults are still far from the ones obtained with a higher N .

4.2. Instance Segmentation

We will follow the semi-supervised pipeline described

in Section 4, training an annotation network fθ and a seg-

mentation network gϕ. This is the same scheme as in the

semantic segmentation task presented in Section 4.1 but, in

this case, we use the recurrent architecture for instance seg-

mentation RSIS [26] for both fθ and gϕ. We use the open-

source code released by the authors. Further details about

the RSIS architecture are presented in Section 5.

The results in Table 3 show a similar behaviour to the

semantic segmentation case from Table 2, although there

is a more significant improvement of performance when

the segmentation network gϕN
is trained with (X,Y ) ∪

(X ′, Y ′), the union of the strong-labeled set and the

pseudo-annotated set. We follow the same setup pre-

sented in Section 4.1, i.e. we consider different budget

scenarios by varying the number of strong labels N ∈
{100, 200, 400, 800, 1464}. Figure 5 reports the mean Av-

erage Precision at 0.5 for 5 different annotators trained with

random splits of size N . The performance gap between

fθN and gϕN
is more significant for the instance segmen-

tation task (Figure 5) than for the semantic segmentation

one (Figure 2). In the later, both curves converge when

all available 1464 strong labels are used to train the anno-

tation network, which indicates that the segmentation net-

work does not learn anything new from the unlabeled im-

ages. We hypothesize that learning instance segmentation

is a more complex task, and more samples would be needed

for both curves to converge.
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Figure 3: Semantic Segmentation comparison for the validation set of Pascal VOC with other semi-supervised (SS) and

weakly-supervised (WS) methods, that use image-level labels (IL) or bounding box labels (BB).

Figure 4: Visualization of Pascal VOC validation set for

the annotation fθN (A-) and segmentation networks gϕN

(S-), depending on the number of strong labels used N ∈
{200, 400, 800} .

#Strong #Unlabeled val AP 50

RSIS Ours ∼1.4k 31.7

RSIS Ours ∼1.4k ∼9k 46.8

RSIS Ours ∼10k 56.4

RSIS [26] ∼10k 57.0

Table 3: Performance of RSIS for the validation set of Pas-

cal VOC 2012 with different supervision setups.

Figure 6 compares our approach with related works

that tackle weakly-supervised instance segmentation. For

low annotation budgets there is the work from [35], that

addresses weakly-supervised instance segmentation with

image-level labels. This task is clearly very challenging

for the instance segmentation problem, and we demon-

strate that when matching the annotation cost, our semi-

supervised approach reaches significant better performance.

We believe that working with a semi-supervised setup for

low-annotation budgets is convenient for instance segmen-
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Figure 5: Instance segmentation performance of the anno-

tation and segmentation networks for an increasing budget

for the validation set of Pascal VOC.

tation, as cheap labels such as image-level ones barely relate

to distinguishing between different instances of an image.

Bounding boxes, on the other hand, scale down the problem

to separate the foreground from the background, but at the

cost of more expensive annotations and thus at higher bud-

gets [14, 15]. Figure 7 depicts some examples predicted

by the segmentation network gϕN
when varying N . The

higher the N , the better the network distinguishes between

different instances.

5. Training with heterogeneous annotations

Heretofore, we have been assuming a semi-supervised

setup where some samples are strongly-labeled and others

are unlabeled. For instance segmentation, we observe in

Figure 5 that the Average Precision for annotation networks

fθ trained with very few strong samples is very low (an
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Figure 6: Instance Segmentation comparison for the valida-

tion set of Pascal VOC with other weakly-supervised (WS)

methods, that use image-level labels (IL) or bounding box

labels (BB).

Figure 7: Visualization of Pascal VOC validation set for

the instance segmentation network gϕN
(S-) with N ∈

{100, 200, 400, 800, 1464} and M = 10582 − N . The

AP (th=0.50) for each configuration is, from left to right, of

14.9, 23.7, 35.7, 42.9 and 46.8.

annotation network trained with N = 100 reaches a low

figure of 7.7 of AP). In this section we propose to use het-

erogeneous annotations, i.e., strong and weak annotations,

instead of strongly-labeled samples alone. The main differ-

ence to our previous setup, is that now the annotation cost

will come from two sources: the N strong-labeled samples,

and the M weak-labeled ones.

As weak labels, we choose image-level labels, in addi-

tion to knowing how many instances of each class cate-

gory appear in an image (IL+C). This supervision signal

was first employed for weakly-supervised object localiza-

tion [8], and its annotation cost is almost the same as using

simply image-level labels, as explained in Section 3. To the

best of our knowledge, this is the first time that image-level

decoder

MASK CLASS STOP
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sheep 0.99
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f
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f

sheep f
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decoder

decoder

sheep

sheep

decoder

decoder
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Figure 8: RSIS architecture in the first row, and W-RSIS

architecture in the second. RSIS has three different outputs,

the mask, class, and stop score. When the score is below

a fixed threshold (e.g. th = 0.5), no more masks are pro-

duced. W-RSIS receives as input a token for each object in

the image, so it only has the segmentation output.

labels plus counts (IL+C) is used as supervision for instance

segmentation.

The setup is similar to the one explained in Section 4.

For a better understanding, we will keep the same notation.

Let Z be the IL+C labels for the strongly-annotated subset

(X,Y, Z), and Z ′ the IL+C labels for the weakly-annotated

subset (X ′, Z ′). To exploit the weak-labels Z ′, now fθ dur-

ing training will receive as input (X,Z), and will be opti-

mized to predict Y . In order to infer the pseudo-annotations

Y ′, (X ′, Z ′) will be fed into fθ. The segmentation network

gϕ works as in Section 4. The architecture of the anno-

tation network fθ is a modified version of RSIS [26], and

the architecture for the segmentation one corresponds to the

original RSIS model.

Annotation network. RSIS [26] consists in an encoder-

decoder architecture (Figure 8). The encoder is a ResNet-

101 [10], and the decoder is formed by a set of stacked

ConvLSTM’s [30]. At each time step, a binary mask and

a class category for each object of the image is predicted

by the decoder. The architecture also has a stop branch that

indicates if all objects have been covered. The main prop-

erty of this architecture is that its output does not need any

post-processing (as it happens with proposal-based meth-

ods, where proposals need to be filtered), so that the pseudo-

annotation is the output of the network itself. Our modified

RSIS architecture for weak labels (W-RSIS) is also depicted

in Figure 8. The main difference is that, besides the fea-

tures extracted by the encoder, the decoder receives at each

time step a one-hot encoding of a class category represent-

ing each of the instances of the image. If there are several

instances belonging to the same class, a one-hot encoding

of that class will be given as input at several time-steps.

Table 4(a) presents an ablation study to analyze the im-

pact of the different modifications included in W-RSIS.

We use the standard semi-supervised setup for Pascal VOC
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AP 50

RSIS 31.8

RSIS + IL 36.6

RSIS + IL + C 37.7

W-RSIS 40.0

(a)

AP 50

Hungarian 35.2

Masked Hungarian 40.0

(b)

Table 4: (a) Ablation study of IL+C as inputs with the Pas-

cal validation set. (b) Ablation study of different losses with

the Pascal validation set.

(1464 strong labels and 9118 weak labels).

The first row in Table 4(a) corresponds to the original

RSIS, which annotates samples without using the weak la-

bels. The + IL term means that the output of the softmax

class predictor is masked at inference time, thus constrain-

ing the possible classes predicted for the pseudo-labels. The

option + C assumes that the count of instances n in the im-

age is known, and post-processes the pseudo-labels accord-

ingly by keeping the first n objects. Finally, in W-RSIS the

IL+C labels are an input of the network fθ, instead of sim-

ply being used as a post-processing step. The ablation study

shows how the proposed W-RSIS architecture maximizes

the information contained in the IL+C weak labels.

RSIS does not impose any order on the sequence of pre-

dicted masks.

The permutation of the ground truth masks that leads to

a lower loss with the predicted sequence is found with the

Hungarian algorithm.

As in RSIS [26], we use the soft intersection over union

loss (sIoU) as the cost function between the mask predicted

by our network and the ground truth mask. Notice that now

we have some restrictions in the sequence order, as we want

an alignment between the input class category and the out-

put, so in order to train W-RSIS, the Hungarian matching is

performed only between ground truth instances of the same

category.

Table 4(b) includes a second ablation study, in this case,

about the masking of the Hungarian algorithm to just allow

some permutations, constrained to class categories.

The first row corresponds to the basic case Hungarian,

but we observed that this did not constrain that our input

classes were aligned with the classes of the predicted masks.

Afterwards, we applied the Hungarian algorithm among

objects of the same category only, hence forcing an align-

ment between the input class categories and the actual class

category of the prediction. This last Masked Hungarian so-

lution resulted to be the best option.

Figure 9 shows how W-RSIS generates better anno-

tations compared to RSIS at different annotation bud-

gets. We train multiple W-RSIS models fθN with

a varying number of strong-labeled samples N ∈
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Figure 9: Comparison of RSIS annotation network, whose

input are only the images to be annotated, and W-RSIS an-

notation network, whose input are the images and the IL+C

information.

{100, 200, 400, 800, 1464}, and compare them to the

baseline RSIS. We notice that for any number N of strong

samples, W-RSIS outperforms RSIS. As in previous sec-

tions, for each N we report the mean performance of 5 dif-

ferent models with different random subsets .

Figure 10 shows qualitative results of the pseudo-

annotations obtained by both configurations. The four pairs

of images correspond to cases in which RSIS (first row)

misses some of the instances because they were predicted

with a low confidence score that does not reach the mini-

mum detection threshold. W-RSIS (second row) does not

present this limitation because the amount of instances for

each class is provided by the weak annotation, so the con-

fidence score is ignored. Moreover, the second pair of im-

ages corresponds also to the case in which RSIS predicts

a wrong class, a problem that W-RSIS does not have ei-

ther as the category is already provided by the weak label.

The knowledge about the category of the pseudo-annotation

provided by the class label facilitates the task, resulting in

better quality masks.

Segmentation network. We analyze the final performance

of the segmentation network gϕ in terms of the annotation

cost when using the RSIS or W-RSIS annotation network.

Notice that the segmentation network gϕ is the same for

both configurations (RSIS), only fθ changes.

In Section 4 annotating samples was cost-free, so vary-

ing the number M did not impact the annotation budget.

Consequently, we always considered M to be the total

size of the training set of Pascal VOC minus N (M =
10582−N ). In the heterogeneous setup that we are consid-

ering now, there is a cost involved in annotating samples, as

weak-labels are fed into the annotation network.

In this section we will vary the number of weak-labeled
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Figure 10: Comparison of pseudo-annotations obtained by

RSIS (first row) and W-RSIS (second row) with N = 800.

The class category predicted for each pseudo-annotation is

provided with the same color code.

samples M ∈ {912, 2279, 4459, 6838, 9118}, corre-

sponding to the {10, 25, 50, 75, 100}% of the additional

Pascal VOC set from [9]. In Table 5 we fix different bud-

get scenarios and we compare RSIS and W-RSIS. We ob-

serve that for very low annotation budgets (∼0,55 days),

W-RSIS outperforms RSIS, meaning that it is more conve-

nient to spend some budget on weak-labels and reduce the

number of strong ones. We also notice that W-RSIS with

N = 100 strong samples and a few weak-labeled samples

(M = 912), reaches much higher results than those ob-

tained with RSIS with N = 100 and M = 10482 unlabeled

samples (25,2 vs. 14,9), but at a higher budget cost (0,51

vs. 0,27). For higher budgets the RSIS annotation network

is strong enough, and does not benefit from weak labels.

Table 5 includes the results of [35], the only previous

work addressing the problem of instance segmentation with

a low annotation budget. With both our models (RSIS or W-

RSIS) we reach significant better results than [35]. At the

same annotation budget (∼2,2 days), RSIS with N = 200
strong samples and M = 6838 weak-labeled ones reaches

a figure of 32,7 vs. 26,8 of AP 50. When having available

more strong samples (N = 800), RSIS reaches a higher

figure of 42,9 vs. 26,8. Our models also outperform [35]

at half its budget (35,5 or 30,8 vs. 26,8 of AP 50 at 1,1 vs.

2,43 annotation days). Figure 11 shows qualitative results

for W-RSIS for different numbers of weak-labeled samples.

6. Conclusion

The main contribution of this work is a unified bench-

mark for image segmentation structured around the anno-

tation cost, allowing to compare fairly weakly and semi-

supervised methods.

This budget-aware benchmark has allowed us to demon-

strate that semi-supervised setups are preferable to weakly-

supervised setups or, in other words, that fewer but strong

labels achieve better results than a larger amount of weak

labels. This fewer labels paradigm is especially suitable in

#Strong #Unlabeled #Weak Budget AP 50

RSIS 100 10482 - 0.27 14.9

RSIS 200 10382 - 0.55 23.7

W-RSIS 100 - 912 0.51 25.2

RSIS 400 10182 - 1.1 35.5

W-RSIS 200 - 2279 1.14 30.8

RSIS 800 9782 - 2.21 42.9

W-RSIS 200 - 6838 2.31 32.7

Zhou et al. [35] - - 10582 2.43 26.8

Table 5: Results of the segmentation network when the an-

notation network changes (RSIS vs. W-RSIS) at different

fixed annotation budgets (in days).

Figure 11: Visualization of Pascal VOC validation set for

the instance segmentation network gϕ when the annotation

network is W-RSIS. The setup consists of N = 200 and

M ∈ {912, 2279, 4459, 6838, 9118}. The percentage in-

dicates the fraction of M compared to the total set [9]. The

AP (th=0.50) for each configuration is, from left to right, of

27.3, 30.8, 30.7, 32.7 and 33.3.

those domains in which collecting images is cumbersome

(e.g. for the medical field).

Moreover, the time to outline segments can be alleviated

even further by modern interactive annotation tools [1, 17].

Therefore, at a restricted annotation cost, more strong labels

can be obtained, aiming at closer figures compared to the

fully-supervised case.

Acknowledgments: This research was supported by the

Spanish Ministry of Economy and Competitiveness and the

European Regional Development Fund (TEC2016-75976-

R, TIN2015-65316-P), by the BSC-CNS Severo Ochoa pro-

gram SEV-2015-0493, by LaCaixa-Severo Ochoa Interna-

tional Doctoral Fellowship program, and by the Catalan

Government (2017-SGR-1414).

100



References

[1] D. Acuna, H. Ling, A. Kar, and S. Fidler. Efficient interactive

annotation of segmentation datasets with polygon-rnn++. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018. 8

[2] J. Ahn and S. Kwak. Learning pixel-level semantic affinity

with image-level supervision for weakly supervised semantic

segmentation. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018. 1, 2

[3] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei.

Whats the point: Semantic segmentation with point super-

vision. In Proceedings of the European Conference on Com-

puter Vision (ECCV), 2016. 1, 2, 3

[4] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In Proceedings of the European

Conference on Computer Vision (ECCV), 2018. 3, 4

[5] F. Chollet. Xception: Deep learning with depthwise sepa-

rable convolutions. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 3

[6] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding

boxes to supervise convolutional networks for semantic seg-

mentation. In Proceedings of the IEEE International Con-

ference on Computer Vision (CVPR), 2015. 1, 2

[7] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International journal of computer vision, 2010. 2,

3

[8] M. Gao, A. Li, R. Yu, V. I. Morariu, and L. S. Davis. C-

wsl: Count-guided weakly supervised localization. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), 2018. 2, 3, 6
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